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MARKOV CHAIN M:DEf S RR
HYIKIOOIC TlME SERIES ANALYSIS

activities, on the other hand, may require

that modelling of annual time series maintain

and take into account the seasonal stru~ture

of the associated seasonal series when

aggregated to fonn the annual sequence.

theirwithreserrblanceandstructure

The discrete rrode l l ing of time series

using Markov chains involves two important

steps, namely, the definition of states of

the Markov chain and the estimation of the

transition probabilities. &sic to these

steps is the twin problem of the nature of

discretizat ion and the size of the uni t of

discretization used. 'The fonnulation of an

explicit transition matrix roodel is the main •

subject of this paper.

•

cont inuous model counterparts are analyzed.

'The structure of the aggregate of seasonal

series modelled by Markov chains is a l so

examined. Some practical applications are

also discussed.

'This paper presents sane transi t ion ,

probabil i ty matrix rrodels in Markov. chain •

rrodell ing of hydrologic time series. 'Their

properties such as their correlation

2.1 EStimation of Transition Matrix

2. Markov Chain M>delling

Most annual hydrologic time series have

. dependence structures which can be modelled

by an autoregressive model of order one, or

the AR (1) model. Markov chain modelling of

hydrologic time series wi th an AR (l)

dependence structure requires efficient •

estimation of the transition probability

matrix of the corresponding Markov chain

rrodel , A logical approach to follow is to

utilize the transition probability matrix

derived fran a discrete analogue of the

continuous autoregressive rrodel.

In order to represent the dependence

structure of the time series by a Markov

chain, Pegram (1972) developed a rmde l which ..
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In recent years, several stochast ic

models have been proposed for modelling time

series which are claimed to' have the

capability to reproduce the main statistical

properties of the observed histolical series.

Same models which have gained increased

popularity in time series analysis in general

and in hydrology and water resources in

particular are the mixed autoregressive

rrovi ng average models of order (p,q) or .AIMA

(p, q) models (Box and Jenkins, 1970) and

the Markov chain models (e.g., Lloyd, 1967).

Ole imrediate problem in using Markov

chain mod~ls in modelling of continuous time

series involves the fonnulation of appro

priate transition probability matrix models

that account for the correlation structure

in the sequence. For instance, in those

cases where the autoregressive models or the

mixed autoregressive~ving average models

are used to represent the dependence

structure of the series, the main problem is

tha t of detennining the transit ion

probabilities of the corresponding Markov

chain models that will mimick the behavior
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defines the transition matrix explicitly.

He defined the transi tion rrodel P of the..
s tochas tic process {Xt} as

P = pI + (l-p) ~lT

Ta < p < 1, ~ ~Q, 1 ~ = 1

(1)

represent ing a cont inuous process by a

discrete rrode l .

2.2 Mixture of Independent Markov Otains

2.2.1 First-Qrder Markov Process

be

... ,+0,-1,... ,

{Yt} be another simple

wi th transition matrix P
y

where

-1 ),

Since Xi and Yi are independent, then

Similarly, let the state space of

where

The process {Zt} where Zt = Xt + Yt
is a mixture of Xt and Yt. The marginal

distribution of Zt can be detennined as

follows. Let the state space of {Xt} be

{-m , - (In -1), ••• , -1, 0, + 1, ••• ,
x x

(rnx - 1), rnx }

process; i .e. ,

(Xt, Xt+k)
k

1, 2, 3, •..corr = Px , k =

and

(Yt , Yt+k)
k

1, 2, 3, .....corr =Py , k =

shown that bet} and {Yt } each have a

corre.lat ion structure ident ical to an AR (1)

Py =pyI + (1- Py) )JylT

Furthennore, assume that { Xt}
are independent armng themselves.

Likewise, let

Markov chain

given by

Let {X
t} be a harogeneous simple

Markov chain wi th transition matrix Px
defined as in eq. (1) by

P = PxI + (l-p ) )Jx1T
x x

Twhere 1 denotes the vector (1 1 ••• 1) of

size i x k where k is the number of discrete

intervals, )J is a collJTU1 vector of the

stationary distribution of { Xt} , :I is the

identify matrix of size k x k, and pis the

• lag-one correlation coefficient of { x, }.
The 1imiting stationary distribution of

the transition matrix is the )J vector

i tsel f. Thus, to fit the rrode l of eq. (1),

the only parameters that have to be

est irna t ed are the stat ionary distribut ion )J

and the lag-one serial correlation

coefficient P. Therefore, it is possible' to

specify any prior stationary distribution

.. and correlation p and then corrpute the

corresponding transition matrix.

It may be noted that the autocorrelation

structure of { Xt} is given by (Pegram, 1972)

corr (Xt, Xt+k) = pk, k = 1, 2, 3,... (2)

which is identical to that of an AR (1) rmdel

defined as

• where ~ is the autoregressive coefficient

which can be shown to be equal to the

first-order autocorrelation coefficient p

and £t' is the independent residual (Box

and Jenkins, 1970). Moreover, since eq. (2)

is independent of the size of the state

space of {Xt} it is possible to increase

the size of the state space without changing

the correlation structure of {Xt}. This..
is an appealing property especially when
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P(Zt = k) = ~ px(i) py(k-i),
1

_(~ + my) < k < + (~ + my)

\\here -m < i < + m and such that
x- x

-m < k-I < + m •
y- - Y

By definition, the mean and variance of

{Zt is given by

E(Zt E(Xt) + E(Yt)

Indiv idua l process has Markovian structure,

then,

P(Xt = i , Yt = jlXt-1 = k ,

Yt-l = t , Xt-2 = m, Yt-2 = n)

. = P(Xt = i , Yt = JIXt-1 = k, Yt-l =l)

Thus, the pair {X
t,

Y
t

} fonns a bivariate

Markov chain whose transi t ion probabil i ties

are given by

and

Var (Zt) = Var (Xt) + Var (Yt)

•a(ij Ikl) = P(Xt = i, Yt = j IXt- 1 = k,

Yt - 1 =l), Px (i , k) = P(Xt = i IXt _1 = k) ,

and Py (j , 1) = P(Yt = j IYt _1 =n.

where

(3)

1,2, ...

k 2
p a +x x

2 .
a +x

The auto~orrelation function of

process is given by

where {Xt} is a simple Markov chain and

{Ut}is an independent discrete whi te noise

process with mean zero and variance a 2•

As before, let the state space of {Xt} be

{-m (-m -1), .•• , -l~ 0, + 1,
x x

(rnx -1), ffix }

It rray be noted that the autocorrelation

function of { Z} is a weighted linear

corrl:>ination of k and pk where thePx y
weights are detennined by the individual

variances. Thus, when a2 2 2= (J = a ,x y
then eq•. (3) reduces to

k + k
Px Py

CQT:(Zt' Zt+k) = 2 ' k = 1,2, ...

In the part icular case Px = pY = p, eq,

(3) yields

corr (Zt, Zt+k) = pk, k = 1, 2, •••

2.2.2 ARMA (1,1) Process

Cons ider again the {X
t}

processes discussed earlier.

mixture process {Xt*} such that

and ty
t

}

Def i ne a

...,

•

P(Xt * = k) = E P (i) U(k-i)'. x
1

-~ - a 2. k 2. ~ + a

Thus, in this case the dependence structure

of {Zt} is identical to the autocorrelation

structure of each individual Markov chain.

Nbte that the {Zt}process itself is not

a Markov chain since P(Zt=iIZt-1 = j, Zt-2= k)

+P(Zt = ilzt_l = j), in general.

Hbwever, consider now the states of the

mixture process to be the pair (Xt, Y
t).

Since x, and Yt are independent, and each

where

Since x, and Ut
rmrginal probability

is given by

are independent,

distribut ion of

the

X*t
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\\here

" -rnx ~ i ~ rnx and such that -a 2.- k - i 2.-+ a.

Def ine now a mixture process {Zt*} where

Zt* = X
t

+ Yt : X
t

+ Ut + Yt + Wt

The mean and the variance of Xt* are given by

P(Zt =.k) = E E E Px(j) . u(k-j) . P (t)
i j t Y

w(k - i t)

where - (m + m + a + b) <i < +(m + m + a +b) ,
x y - - x y

-m < j <+ m , - a < k - J < + a, -m < R. < + ITL,x- - x - - y- - y

and -b < k-i- R. <+ b with m and a, and m and b--x y

corresponding to X* and Y*, respectively.

It can be shown that the marginal

probability distribution of Zt* is given by

the

be

the

and

Var (Xt *) =Var(Xt) + Var(Ut)
The mixture process {xt* } wi 11

correlated due to the dependence in

{Xt } process. It can be shown that

correlation structure of {Xt*} is given by

0
2
x k

2 + 2 Px
ax au

k=1,2, ... (4)
The mean and variance of Zt* are given by

and

probabilities defined by

c(ij Ik t) =Px(i,k) • u(j)

Where

c(ij Ikt) = P(Xt=i, Ut=j IXt_1 = k,

Yt-l =t), Px(i,k) = P(Xt=i Xt- 1 = k),

In the special case P = P = P , eq.x -y
(5) yields

2 + 2'
a a k

corr(Zt' Zt+k)
x y

P= 2 22 + 0
2

+a a + a
x u y w

k = 1, 2,

Var (Zt*) =Var(Xt) + Var{Yt) + Var{Ut)

+ Var(Wt)·

2 k .a p' +x'x

(k = 1,2, ... )

The correlatio~ structure of Zt* is defined

by

a

the

not

'if

is{x *}
t

lhwever,

is represented in

(Xt, Ut) then the

forms a bivariate

one-step transition

{ Xt *} is independent of the state space.

Hence, the state space can be increased

without altering the dependence structure of

the process.

N:>te further that

simple Markov chain.

mixture process {X *}
t

terms of the pair

• sequence {Xt, Ut}
Markov chain with

N:>t ice that eq, (4) is identical to the

corre l a t ion structure of an ARMA u ,1)

process (Box and Jenkins, 1970).

• N:>te the autocorrelation structure of

•
13



Wt } where and 2 the and variance,~- a are mean
T T

one- respectively, for season T , and p =

(X x, ' ).
T,T'

corr t , T, , T
The correlation structure of Zt is

given, in general, by

which is identical to the dependence

structure of an~ (1,1) process.

The mixture process {Zt } does not fonn

a Markov chain. HOwever, it can be shown

that the quadruple {Xt, Ut , Yt ,

fonns a quadrivariate Markov chain with

step transition probabilities defined by

q(ijk£lefgh) = p (i,e) . u(j)x

w 2
E a +

T=l T
p T'a a ,

T, T T

py(k,g) . w(£)

where q(ijk£lefgh) = p(X
t

= i, Ut = j,

Yt = k, Wt = £!Xt-1 = e, Ut - 1 = f,

Yt - 1 = g, Wt - 1 = h), and

p (... ), p ( •.• ), u(.) and w(.)
x y

are as defined earlier.

w 2
w

(k)o 0
1: P (k)o + 1: 1: PT T

T=l
T T T=l T'=l

, T T'

corr(Zt'Zt+k) •w
0

2 +1: 21: 1: PT,T' o 0

T=l
T T < T'

T T',

k=1,2, ...

where ~T (k) is the correlation function for

2.3 .Aggregate of Seasonal Markov O1ains season T, and , (k ) is the lag-k
T , T

Thus ,Iet {Xt }, t = 1, 2, ••• and
, T

T = 1,2, ••. , w (nurrber of seasons), be a

~rkov chain with seasonal transition matrix

defined for each season where t denotes the

•PCZt+1 = v , Xt+1,1 = r 1, X . 1 2 = rt+ , 2, .•. ,

s X = s )2, ..• , t,w w

correlation between seasons T and T '.

It may be noted that the aggregated

process { Zt} do~s not fonn a Markov chain •

since P(Zt = i I Zt-l = j, Zt-2 = k) f
P(Zt = i IZt -1 = j) in general. H::>wever,

if the aggregation is represented by the

mul tivariate process { Zt' Xt, I'

Zt,2' .•• , Xt,w} a multivariate Markov

chain is now fonned wi th one-step

multivariate transition matrix defined by

w w

1

0 if either E r . ~ v or E s . ~ U
"1l. "1l.l.= l.=

= P(Xt+1,1 = r 1, Xt+1,2= r X = r I2, ••• , ·t+1,w w

Xt 1= sl' Xt 2= s2 Xt w=s ) ,otherwise.
, , , ••• " w •

Let z, be

the aggre

defined byvalues

mean and variance

season.

The

the

of the seasonal
w
E X

T=l t , T
are given by

gation

a discrete process representing

year and T denotes

The annual sequence is the aggregate of

the seasonal series. In discrete model 1ing

of time series, it may be of particular

interest to detennine the model structure of

the resulting annual series knowing the

structure of the corresponding seasonal

series.
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structure of the aggregat ion of the seasonal

.. series has been retained, it is achieved at

the expense of increasing the dimensionality

of the state of the system.

Note that a l though the Markovian propert i es 0 f the aggrega t ed fl ows a t the

junction may be detennined by cons ider i ng

the properties of the individual Markov

rrode l ,

4. Summary and COnclusion

Resul ts

requires

The dependence

continuous time

chains

fitting.

of

curvefor

are presented.
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structure of the aggregate of seasonal

Markovian sequence is also examined.

FUrther research is needed to develop a

family of transition matrix models analogous

to the theoretical probability distributions

Discrete modelling

series using Markov

rmdels

fonnulation of adequate transition matrix

rmde l s which have the same dependence

structure as the sequence. Some explicit

transition matrix models with correlation

structures identical to that of the AHMA

for sample size n

of correlation

Application of the Mbdels

R and of defici t Dn n
for various values

3.

Time series rrodel l ing is mainly used in

hydrology and water resources for generation

of synthetic hydrologic sequences and for

forecasting future hydrologic time series

that reproduce the main statistical• characteristics of the historical hydrologic

time series. Hbwever, same other statist~cal

properties of hydrologic series essential in

water resources development studies are also

important to look at. For instance, the

range and the deficit of cumulative (partial)

suns are propert ies related to storage

capacities of reservoirs. GOmide (1975) has

shown that range and deficit analysis follows•directly from the theory of Markov chains.

The sequence of binomial net inflows

into a reservoir with Markovian dependence

structure can be represented by a Markov

chain wi th transi tion matrix defined by eq.

(1) • The mean and the variance of range

coefficients p and size of state space m

- following GonUde (1975), and Lansigan (1982)

are given in Iable 1.

~,,

t
I

Another appl ication of the Markov chain

models presented in this paper involves the

development of flooding models for two

independent rivers passing through a

junct ion. For instance, the streamflow

downstream of the junction is the sun of

r water flowing from each river which can be..I rrode l l ed as two separate Markov chains. The
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Table I. Distribution properties of Rn and Dn of binorrdal distributed

net inputs x, with P(Xt = i ) = ancm+i (1 /2)2m p

i = '"111 p -rn+ 1 p ••• pOp ••• , rrr-I p rn,

0--------------------------.,.---

P m

o
00

18
8
2

18
8
2

18
8
2

18
8
2

8
2
8
2

n = 2

1. 3621

.80

1.3546
1.3453
1.2969

.7790

.7847

.8136

.7924

.7855

.7500

.8283

.8315

.8478

1. 4130
1. 3578

.9493

.9984

n = 4

2.2217

1. 44

2.2124
2.2010
2.1408
1.0271
1. 0312
1. 0518

1.4648
1. 4552
1.4079
1.1200
1.1234
1.1419

2.4599
2.3969
1.4026
1.4399

n = 8

3.4879

2.46

3.4772
3.4640
3.3943
1.3976
1.4008
1. 4178

2.4740
2.4624
2.4026
1. 5067
1.5089
1. 5199

4.0243

1.9945

n =16

5.3171

3.93

5.2908
5.2139

1.9408
1.9540

3.9015
3.8309

2.0828
2.0916

6.4411

2.7331

n = 32

7.9322

5.96

7.8220

2.7266

5.8751

2.9245

9.9586

3.7549

.E(Rn)

E(Dn)*

E(Rn)

/Var(Rn)

E(Ih)

I Var(Rn)

•

03 ----------------------------
8
2
8
2

.7855

.7500

.9480

.9666

1.5118
1. 4534
1.4411
1.4678

2.6651

2.0881

4.5418

2.8957

7.2850

4.0360

E(Dn)

I VadOn>

2

2

1.3984

1.1028

2.5679

1. 741 7

4.5016

2.5452

7.4821 11. 8771

3.5460 4.8993

E(R )
n

I Var (R )
n

05 -----------------------------
2

2

2

2

.7500

1.0383

1. 4391

1.1967

1. 4762

1.7088

2.7396

2.0785

2.8130

2.6010

5.0404

3.3424

5.0520

3.7082

8.8276

4.9178

8.4616

5.1742

14.6463

6.8719

E(D )
n

lvar(D )
n

E(R
2)

I Var(R )
n

07 -----------------------------
2

2

.7500

1.1054

1. 4914

1.9697

2.9265

3.2843

5.5536

5.0244

9.9288

7.1832

E(D )
n

I Var(D )
n
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*N:>te: Approxirrn. te

E(R) and
n

E(D ) and
n

values from Fig. 5.9 p Gomide

v'Var{R) from Pegram e t s a l , ,
n --

J"..,Va,.....r--..{D.....-.)~fromLansigan (1982).
n

(1975);

(1980) ;

values of

values of

•


