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"1. Introduction

In recent years, several stochastic
models have been proposed for modelling time
series which are <claimed to have the
capability to reproduce the main statistical
properties of the observed historical series.
Some models which have gained

popularity in time series analysis in general

increased

and in hydrology and water resources in
particular are the mixed autoregressive-
moving average models of order (p,q) or ARMA
(p, q) models (Box and Jernkins, 1970) and
the Markov chain models (e.g., Lloyd, 1967).

(ne inmediate problem in using Markov
chain models in modelling of continuous time
series involves the formulation of appro-
priate transition probability matrix models
that account for the correlation structure
in the sequence. For instance, in those
cases where the autoregressive models or the
mixed autoregressive-moving average models
are used to represent the dependence
structure of the series, the main problem is
that  of determining’ the transition
probabilities of the corresponding Markov
chain models that will mimick the behavior
series. Some modelling

activities, on the other hand, may require

ot the other
that modelling of annual time series maintain
and take into account the seasonal structure
of the series when

associated seasonal

aggregated to form the annual sequence.
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model.

presents same transition

This paper
probability matrix models in Markov. chain
Their
correlation

their

modelling of hydrologic time series.
properties such as their
structure and reserblance with
continuous model counterparts are analyzed.
The structure of the aggregate of seasonal
series modelled by Markov chains is also
examined. Some practical applications are

also discussed.

2. Markov Chain Modelling

The discrete modelling of time series
using Markov chains involves two important
steps, namely, the definition of states of
the Markov chain and the estimation of the
transition probabilities. Basic to these
steps is the twin problem of the nature of
discretization and the size of the unit of
discretization used. ‘The formulation of an
explicit transition matrix model is the main

subject of this paper.

2.1 Estimation of Transition Matrix

Most annual hydrologic time series have

“dependence structures which can be modelled

by an autoregressive model of order one, or

. the AR (1) model. Markov chain modelling of

hydrologic time series with an AR (1)

dependence structure requires efficient

estimation of the transition probability
matrix of the corresponding Markov chain
A logical approach to follow is to
utilize the transition probability matrix
derived from a discrete analogue of the
continuous autoregressive model.

In order to represent the dependence
structure of the time series by a Markov

chain, Pegram (1972) developed a model which



defines the transition matrix explicitly.
He defined the transition model P of the
stochastic process {Xt} as

P =pI+ (1-p) ETT

(1)
L

0<p<l,u>0,1

where 1T denotes the vector (11 ... 1) of

size i x k where k is the number of discrete

intervals, ¥ is a colum vector of the

stationary distribution of { Xf} ,» I is the

identify matrix of size k x k, and pis the
lag-oné correlation cdefficient of { Xt}'

The limiting stationary distribution of

the transition matrix 1is the

itself.

U vector
Thus, to fit the model of eq. (1),
the only parameters that have to be
estimated are the stationary distribution W

and the

lag=-one serial correlation

coefficient p. ‘ITherefore, it is possible- to
specify any prior stationary distribution
and correlation p and then compute the
corresponding transition matrix. '

It may be noted that the autocorrelation

structure of { X; } is given by (Pegram, 1972)
corr (X¢, Xg4k) = Pk , k=1, 2, 3,... (2)

which is identical to that of an AR (1) model

defined as

Xt=

where ¢ is

the autoregressive coefficient

" which can be shown to be equal to the

first-order coefficient p

residual (Box

Moreover, since eq. (2)

autocorrelation

and Et- is the

and Jenkins, 1970).

independent

is independent of the size of the state

space of {)%} it is possible to increase
the size of the state space without changing
the correlation structure of {)%} . This

is an appealing property especially when

representing a continuous process by a

discrete model.

2.2 Mixture of Independent Markov Chains
2.2.1 First-Order Markov Process

Let {Xt} be a
Markov

homogeneous simple

chgin with transition matrix E;

defined as in eq. (1) by
T

Po=po + (o) ul

Likewise, let {Yt} be another simple

Markov chain with transition matrix E&

given by
By

— - T L
=pyl + (1-Py) Hyl

Furthermore, assume that {Xt} and {Yt}
are independent among themselves. It can be

shown that D% } and {Yt} each have a
correlation structure identical to an AR (1)

process; i.e.,

k
corr (Xt, Xt+k) =px ’ k = l, 2' 3....
and
k
corr (Y, Yi+k) = Py » k=1, 2, 3,...
The process { ZJ’ where Z, = X+ Y,

is a mixture of Xi and Yt' The marginal
distribution of Zt can be determined as
Iet the state space of {Xi} be
{'Tnx, _(lT]X -1), vewy —l, 0’ +].’|lo’

(mg - 1), my }

follows.

where

Similarly, let the state space of ng be
» - —1 » se ey —lg
ﬁny (m, )

Yy
Gny -1), nv} where

0’ + 1’ es ey

P(Yy = i) = Py(i) -my<i<+my

Since X; and Y; are independent, then
11



Pz, = 10 = T oy(i) o (),
'("1)(+“5;)iki+ ("5(+m}’)

where such that

m <k-i <+m.
- =y

m < i< + m and
X — X

By definition, the mean and variance of
{Z% is given by
E(Zy E(X¢) + E(Yy)
and
Var (Z¢) = Var (Xy) + Var (Y;)

The autocorrelation function of the {Zt}

process is given by

3
pk z, pk02 (3)
= X X ’ = e
corr(Zt, Zt+k) ———Y—X' 5 k=1,2,

Q

It may be noted that the autocorrelation

function of {Z} is a weighted linear
corbination of p}: and p]§' where the
weights are determined by the .individual
variances. Thus, when oﬁ = ozy = 02,
then eq. (3) reduces to

01; + pk
corr(Zt, Zt+k) = 5 , k=1,2,
In the particular case Py = p,y =p, eq.
(3) yields

corr (Z¢, Zi4x) =°PK, k=1, 2, ...

Thus,

of {Zt} is identical to the autocorrelation

in this case the dependence structure

structure of each individual Markov chain.
Note that the {Zt}process itself is not

a Markov chain since P(Zt=i|Zt-l =Js 2, 5= k)

# P(z, =

However, consider now the states of the

i|Zt_1 =j), in general.

mixture process to be the pair (Xt’ Yt)'
Since Xt and Yt are independent, and each

12

individual process has Markovian structure,
then,

PX, =i, Y, =jlX_ =k

Yo, =t X p=m Y, =n)
= P(X, =i, ¥, = A% =k Y, =£)

Thus, the pair {Xt’ Yt} forms a bivariate
Markov chain whose transition probabilities

are given by
a(ijlk® = B (i,k) Py(j, )

where

a(ij|kd = PX, =1, Y, = ilXeq =k

Yt'1 =’e ) b Px(i}k)

and Py(j,l’) = P(Y, = jIYt_1 =0.

P(X, = ilx,c_1 = k),

2.2.2 ARMA (1,1) Process

Consider again the {Xt} and {Yt}

processes discussed earlier. Define a

mixture process {Xt*} such that

X* =X + U
where {Xt} is a simple Markov chain and
{Ut}is an independent discrete white noise
process with mean zero and variance 02.

As before, let the state space of {Xt} be

{-mx (-mx-l),..., -1, 0, + 1, ...,
(mx -l)s mx}
where

P(Xy = 1) Pg(i), my < i <my

Since Xt and Ut are independent, the
marginal probability distribution of Xt*
is given by

P(X,* = k) = I P (i) Uk-i),
1

-mx-a_<_kimx+a



where
-my < i < my and such that -a < k - i <+ a.
The mean and the variance of X;* are given by

E(Xt*) = E(Xt) + E(Ut)
and

Var (Xt*) = Var(Xt) + Var(Ut)
{Xt*} will be
correlated due to the dependence in the

The mixture process

{X,} process. It can be shown that the

correlation structure of {X *} is given by

* Yk = X
corr (X%, Xt+k 5

k=1,2,... (4)
Notice that eq. (4) 1is identical to the

structure of an ARMA (1,1)
process (Box and Jenkins, 1970).

correlation

Note the autocorrelation structure of
{ Xi*]' is independent of the state space.
Hence, the state space can be increased
without altering the dependence structure of
the process.

Note further that

Markov

{Xt*} is not a

simple chain. However, 'if the

mixture process {Xt*} is represented in

terms of the pair (Xt, L%) then the

sequence {Xi, Ut} forms a = bivariate
Markov chain with one-step transition

probabilities defined by
c(ij |k 2) = Py(i,k) . u(j)
Where

c(ij|ke) = P(X,=1, Ut=j|Xt_1 = k,

Ye.p =2), P(i,00 = PXp=i Xy = K,

Define now a mixture process {Zi*} where

* = X¥ * = + +Y + W
Zt Xt + Yt Xt Ut % "

It can be shown that the marginal

probability distribution of Zt* is given by

. P (%)

. u(k-3) .

P(Z* = k) = I
i

x P ()

)
J 2
k

wik - i 2)

where -(m +m +a+b) <i <+ (m +m + a-+b),
X Y - - X Y

- <5 - < - - <

m <j<c+tm, -a <k J_§4-a, n& < 2_5+-my,

and -b <k-i- 2 <+ bwithm and a, andm and b

corresponding to X* and Y*, respectively.

The mean and variance of Zt* are given by

E(Zt*) E(Xt) + E(Yt)

and

Var (Zt*) Vhr(Xt) + Vhr(Yt) + Vhr(Lk)
+ Vér(Wt).

The correlation structure of Zt* is defined

by

In the special case Pe = py' = P, eq.
(5) yields
d2 " O2‘
corr(Z¥, Z*¥ ) = = g > pk
t7 otk 02 +g.+0_+o0
X u y
k=1, 2,
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which is identical to the dependence
structure of an ARMA (1,1) process.

The mixture process {Zt } does not form
a Markov chain. However,
that the quadruple {Xt’ Ut' Yt’ Wt}
forms a quadrivariate Markov chain with one-

it can bé shown

step transition probabilities defined by
q(ijka|efgh) = p, (i,8) . u(d
k . w(Q)
py( '9)
where q(ijke|efgh) = p(X, =1, U =3,
Y =k, W, = 2|X,_q =e Uy =1L

Y, =9, W_; =h), and

t-1
Py (-++)s py(-n), ul) and wi.)

are as defined earlier.

2.3 Aggregate of Seasonal Markov (hains

The annual sequence is the aggregate of
the seasonal series, In discrete modelling

of time series, it may be of particular

interest to determine the model structure of
annual series

the resulting knowing the

structure of the corresponding seasonal

series.

Thus, let{Xt’T} , t =1, 2, ... and
t=1,2,..., w (number of seasons), be a
Markov chain with seasonal transition matrix
defined for each season where t denotes the
year and T denotes the season. Let Zt be

a discrete process representing the aggre-

gation of the seasonal values defined by
w

Z, = I X . The mean and variance

t =1 t, T

of Zt are given by

w
E(Z,) = T u
t T=1T

14

- and

w 2 w w
To + L z p
=17 1=l t'=r+l

' o ,
T, T T

Var(z,) =
where W and 02 are the mean and variance,
T

respectively, for season 1, and p , =

TrT
corr (Xt,'r, Xt,T')'
The correlation structure of Zt is
given, in general, by
w w
2 ’ (k) 1
L pr(k)or * E‘ 'E Pr,t 99!
z Z ) _ T=1 ] ‘[-1 T =1
corr( led T Tw
121 ot ZE < fv pT,T' OTOT}
k=1, 2,

where u_ (k) is the correlation function for
o, (k) is the

correlation between seasons 1 and T ',

season T, and lag-k

It may be noted that the aggregated

process { Zt} does not form a Markov chain

since P(Z, = il Z,, = i 2,5, = k) ¥
P(Zt = i Izt-l = j) in general. However,
if the aggregation is represented by the
multivariate process {Zt’ Xt 1?
’
Zt,Z"”’ Xt,w } » a multivariate Markov
chain is now formed with one-step

multivariate transition matrix defined by

P Z = = ’ =
(epg = Ve X1 1571 Xeg1,0= %L,
X = =
41w = Gl = W Xe, 1= 510 % 2
SZ,. . Xt,w= S
. w w
0 if either ¢ r; #Fvor Is.#u
i=1 i=1 1
= P X = = =
Xee1,1 = T1r Xep,2 L FOU S En!
-Xt,l= Sqs Xt,2= s2,...,xt,w=sw) (Otherwise.



Note that although the Markovian
structure of the aggregation of the seasonal
series has been retained, it is achieved at
the expense of increasing the dimensionality

of the state of the system,

3. Application of the Models

Time series modelling is mainly used in
hydrology and water resources for generation
of synthetic hydrologic sequences and for
forecasting future hydrologic time series

that reproduce the main statistical
characteristics of the historical hydrologic
time series. However, same other statistical
properties of hydrologic series essential in
water resources development studies are also
important to look at. For instance, the
range and the deficit of cumlative (partial)
suns are properties related to storage

Gomide (1975) has

shown that range and deficit analysis follows

capacities of reservoirs.

directly from the theory of Markov chains,

The sequence of binomial net inflows
into a reservoir with Markovian dependence
structure can be represented by a Markov
chain with transition matrix defined by eq.
(1). The mean and the variance of range
Rn and of deficit Dn for sample size n
for various values of correlation
coefficients p and size of state space m
following Gomide (1975), and Lansigan (1982)
are given in Table 1.

Another application of the Markov chain
models presented in this paper involves the
flooding models for two
passing
instance, the

development of

independent rivers through a

streamflow

is the sumn of

junction. For
downstream of the junction
water flowing from each river which can be

modelled as two separate Markov chains. ‘The

properties of the aggregated flows at the
junction may be determmined by considering
Markov

the properties of the individual

model .

4, Summary and Conclusion

Discrete modelling of
Markov

continuous time

series using chains requires

formulation of adequate transition matrix

models which have the same dependence

structure as the sequence. Some explicit

transition matrix models with correlation

structures identical to that of the ARMA
models are presented. The dependence
structure of the aggregate of seasonal

Markovian sequence is also examined.

Further research is needed to develop a
family of transition matrix models analogous
to the theoretical probability distributions
available for curve fitting. Results
presented in this paper suggest a possible
strategy or approach for developing such

models.
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Table 1. Distribution properties of Rn and Dn of binomial distributed
. . iy - 2n
net inputs X, with P(Xt =1i) = ancmi(l/Z) »

i=-m, mtl, cces 05 000y, m1, m. »

32

P m n=2 n=4 n=28 n =16 n

o 1.3621 2.2217  3.4879  5.3171 7.9322 E(Rp)

0
® .80 1.44 2.46 3.93 5.96 E(D,)*
18 1.3546  2.2124  3.4772
8 1.3453 2.2010 3.4640 5.2908 ERy)
2 1.2969  2.1408  3,3943 5.2139  7.8220
18 27790 1.0271 1.3976
8 . 7847 1.0312 1.4008 1.9408 Y Var(Ry,)
2 .8136  1.0518 1.4178 1.9540  2.7266
0 |
18 .7924  1.4648 2.4740
8 .7855  1.4552  2.4624  3.9015 E(D,)
2 .7500  1.4079  2.4026  3.8309 5.8751
18 .8283  1.1200 1.5067
8 .8315  1.1234  1.5089  2,0828 V Var(Dy)
2 .8478  1.1419 1.5199  2.0916  2.9245
8 1.4130  2.4599
2 1.3578  2.3969  4.0243 6.4411 9.9586 E(Ry,)
8 .9493  1.4026
03 2 .9984  1.4399 1.9945 2.7331 3.7549 Y Var (R,)
8 . 7855 1.5118
2 L7500  1.4534  2.6651 4,5418  7.2850 E(Dy) ® |
8 .9480  1.4411
2 .9666  1.4678 2.0881 2.8957  4.0360 vV Var (D)
2 1.3984  2.5679  4.5016 7.4821 11.8771 ER )
2 1.1028  1.7417 2.5452  3.5460  4.8993 Y Var R )
05
2 L7500 1.4762 2.8130 5.0520  8.4616 E(D )
2 1.0383 1.7088 2.6010 3,7082  5.1742 /Vhr(Eh)
2 1.4391 2.7396 5.0404 8.8276 14.6463 ER,) P
2 1.1967  2.0785 3.3424  4.9178  6.8719 4 Var(R )
07
2 27500  1.4914 2.9265 5.5536  9.9288 E(D))
2 1.1054  1.9697 3.2843 5.0244  7.1832 v Var (D, )

*Note: Approximate values from Fig. 5.9, Gomide (1975); values of
E(Rn) and \/Var(Rn5 from Pegram et.al., (1980); values of
E(D ) and VVar (D_) from Lansigan (1982).



